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Abstract
We study the factorization of the hypergeometric-type difference equation of
Nikiforov and Uvarov on nonuniform lattices. An explicit form of the raising
and lowering operators is derived and some relevant examples are given.

PACS numbers: 0230U, 0210D, 0220, 0365, 0550

1. Introduction

In this paper we deal with the so-called factorization method (FM) of the hypergeometric-
type difference equations on nonuniform lattices. The FM was used by Darboux [14] and
Schrödinger [25, 26] to obtain the solutions of differential equations, and also by Infeld
and Hull [16] for finding analytical solutions of certain classes of second-order differential
equations. Later, Miller extended it to difference equations [20] and q-differences—in the
Hahn sense— [21]. For more recent works see, for example, [4, 10, 11, 29, 30] and references
therein.

The classical FM was based on the existence of so-called raising and lowering operators
for the corresponding equation that allow one to find explicit solutions in a very easy way.
Going further, Atakishiyev and coauthors [4, 6, 10] found the dynamical symmetry algebra
related to the FM and differential or difference equations. Of special interest was the paper by
Smirnov [27] in which the equivalence of the FM and the Nikiforov et al theory [23] was shown;
furthermore, this paper pointed out that the aforementioned equivalence remains valid also for
nonuniform lattices, as was shown in [28,29]. In particular, in [29] a detailed study of the FM
established its equivalence with the Nikiforov et al approach to difference equations [23]. Also,
in [12], a special nonuniform lattice was considered: the author constructed the FM for the
Askey–Wilson polynomials using the difference equation for the polynomials. In this paper we
continue the research of the nonuniform lattice case. Following the idea of Bangerezako [12]
for the Askey–Wilson polynomials and Lorente [18] for the classical continuous and discrete
cases, we obtain the FM for general polynomial solutions of the hypergeometric difference
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equation on the general quadratic nonuniform lattice x(s) = c1q
s + c2q

−s + c3. We use,
as was suggested in [6, 27], not the polynomial solutions but the corresponding normalized
functions, which is a more natural and useful approach. Thus, the method proposed here is
the generalization of [12] and [18] to the aforementioned nonuniform lattice.

The structure of the paper is as follows. In section 2 we present some well known results
on orthogonal polynomials on nonuniform lattices [7, 23, 24]. In section 3 we introduce the
normalized functions and obtain some of their properties such as the lowering and raising
operators that allow us, in section 4, to obtain the factorization for the second-order difference
equation satisfied by such functions. Finally, in section 5, some relevant examples are worked
out.

2. Some basic properties of the q-polynomials

Here, we summarize some of the properties of the q-polynomials that will prove useful later.
For further information see, for example, [23].

We deal here with the second-order difference equation of the hypergeometric type

σ(s)
	

	x(s − 1
2 )

[∇y(s)

∇x(s)

]
+ τ(s)

	y(s)

	x(s)
+ λy(s) = 0

σ(s) = σ̃ (x(s)) − 1
2 τ̃ (x(s))	x(s − 1

2 ) τ (s) = τ̃ (x(s))

(1)

where ∇f (s) = f (s) − f (s − 1) and 	f (s) = f (s + 1) − f (s) denote the backward and
forward finite-difference derivatives, respectively, σ̃ (x(s)) and τ̃ (x(s)) are polynomials in x(s)

of degree at most 2 and 1, respectively, and λ is a constant. We use the following notation for
the coefficients in the power expansions in x(s) of σ̃ (s) and τ̃ (s):

σ̃ (s) ≡ σ̃ [x(s)] = σ̃ ′′

2
x2(s) + σ̃ ′(0)x(s) + σ̃ (0) τ̃ (s) ≡ τ̃ [x(s)] = τ̃ ′x(s) + τ̃ (0). (2)

An important property of the above equation is that the k-order difference derivative of a
solution y(s) of (1), defined by

yk(s)q = 	

	xk−1(s)

	

	xk−2(s)
· · · 	

	x(s)
y(s) ≡ 	(k)y(s)

also satisfies a difference equation of the hypergeometric type

σ(s)
	

	xk(s − 1
2 )

[∇yk(s)q

∇xk(s)

]
+ τk(s)

	yk(s)q

	xk(s)
+ µkyk(s)q = 0 (3)

where xk(s) = x(s + k
2 ) and [23, p 62, equation (3.1.29)]

τk(s) = σ(s + k) − σ(s) + τ(s + k)	x(s + k − 1
2 )

	xk−1(s)
µk = λ +

k−1∑
m=0

	τm(s)

	xm(s)
. (4)

It is important to notice that the above difference equations have polynomial solutions of the
hypergeometric type iff x(s) is a function of the form [7, 24]

x(s) = c1(q)q
s + c2(q)q

−s + c3(q) = c1(q)[q
s + q−s−µ] + c3(q) (5)

where c1, c2, c3 and qµ = c1
c2

are constants which, in general, depend on q [23, 24]. For the
above lattice, a straightforward calculation shows that τk(s) is a polynomial of first degree in
xk(s) of the form (see, for example, [7])

τk(s) = τ̃ ′
kxk(s) + τ̃k(0) τ̃ ′

k = [2k]q
σ̃ ′′

2
+ αq(2k)τ̃

′

τ̃k(0) = c3σ̃
′′

2
(2[k]q − [2k]q) + σ̃ ′(0)[k]q + c3τ

′(αq(k) − αq(2k)) + τ̃ (0)αq(k)

(6)
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where the q-numbers [k]q and αq(k) are defined by

[k]q = q
k
2 − q− k

2

q
1
2 − q− 1

2

αq(k) = q
k
2 + q− k

2

2
(7)

and [n]q! are the q-factorials [n]q! = [1]q[2]q . . . [n]q .
Both difference equations (1) and (3) can be rewritten in the symmetric form

	

	x(s − 1
2 )

[
σ(s)ρ(s)

∇y(s)

∇x(s)

]
+ λnρ(s)y(s) = 0

and
	

	xk(s − 1
2 )

[
σ(s)ρk(s)

∇yk(s)

∇xk(s)

]
+ µkρk(s)yk(s) = 0

where ρ(s) and ρk(s) are the weight functions satisfying the Pearson-type difference equations

�
	x(s − 1

2 )
[σ(s)ρ(s)] = τ(s)ρ(s)

�
	xk(s − 1

2 )
[σ(s)ρk(s)] = τk(s)ρk(s) (8)

respectively. In [23] it is shown that the polynomial solutions of (3) (and so the polynomial
solutions of (1)) are determined by the q-analogue of the Rodrigues formula on the nonuniform
lattices

	

	xk−1(s)
· · · 	

	x(s)
Pn(x(s))q ≡ 	(k)Pn(x(s))q = An,kBn

ρk(s)
∇(n)

k ρn(s) (9)

where

∇(n)
k f (s) = ∇

∇xk+1(s)

∇
∇xk+2(s)

· · · ∇
∇xn(s)

f (s)

An,k = [n]q!

[n − k]q!

k−1∏
m=0

{
αq(n + m − 1)τ̃ ′ + [n + m − 1]q

σ̃ ′′

2

}
.

(10)

Thus [23, p 66, equation (3.2.19)]

Pn(x(s))q = Bn

ρ(s)
∇(n)ρn(s) ∇(n) ≡ ∇

∇x1(s)

∇
∇x2(s)

· · · ∇
∇xn(s)

(11)

where ρn(s) = ρ(s + n)
∏n

k=1 σ(s + k) and

λn = −[n]q

{
αq(n − 1)τ̃ ′ + [n − 1]q

σ̃ ′′

2

}
. (12)

In this paper we deal with orthogonal q-polynomials and functions. It can be proven [23], by
using the difference equation of hypergeometric type (1), that if the boundary condition

σ(s)ρ(s)xk(s − 1
2 )
∣∣
s=a,b

= 0 ∀k � 0 (13)

holds, then the polynomials Pn(s)q are orthogonal, i.e.

b−1∑
s=a

Pn(x(s))qPm(x(s))qρ(s)	x(s − 1
2 ) = δnmd

2
n s = a, a + 1, . . . , b − 1 (14)

where ρ(s) is a solution of the Pearson-type equation (8). In the special case of the linear
exponential lattice x(s) = qs the above relation can be written in terms of the Jackson q-
integral (see, for example, [15, 17])

∫ z2

z1
f (t) dq t , defined by∫ z2

z1

f (t) dq t =
∫ z2

0
f (t) dq t −

∫ z1

0
f (t) dq t
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where ∫ z

0
f (t) dq t = z(1 − q)

∞∑
k=0

f (zqk)qk 0 < q < 1

as follows:∫ qb

qa

Pn(t)qPm(t)qω(t) dq t = δnmq
1/2d2

n t = qs ω(t) ≡ ω(qt ) = ρ(t). (15)

Notice that the above boundary condition (13) is valid for k = 0. Moreover, if we assume
that a is finite, then (13) is fulfilled at s = a providing that σ(a) = 0 [23, section 3.3, p 70].
In the following we assume that this condition holds. The squared norm in (14) is given
by [23, Chapter 3, section 3.7.2, p 104]

d2
n = (−1)nAn,nB

2
n

b−n−1∑
s=a

ρn(s)	xn(s − 1
2 ).

There is also a so-called continuous orthogonality. In fact, if there exists a contour ! such that∫
!

	[ρ(z)σ (z)xk(z − 1
2 )] dz = 0 ∀k � 0 (16)

then [23] ∫
!

Pn(x(z))qPm(x(z))qρ(z)	x(z − 1
2 ) dz = 0 n �= m.

A simple consequence of the orthogonality is the following three-term recurrence relation:

x(s)Pn(x(s))q = αnPn+1(x(s))q + βnPn(x(s))q + γnPn−1(x(s))q (17)

where αn, βn and γn are constants. If Pn(s)q = anx
n(s)+ bnx

n−1(s)+ · · · then, using (17), we
find

αn = an

an+1
βn = bn

an
− bn+1

an+1
γn = an−1

an

d2
n

d2
n−1

. (18)

To obtain the explicit values of αn, βn we use the following lemma—interesting in its own
right—that can be proven by induction.

Lemma 2.1.

	(k)xn(s) = [n]q!

[n − k]q!
xn−k
k (s) + c3

(
n

[n − 1]q!

[n − k − 1]q!
− (n − k)

[n]q!

[n − k]q!

)
xn−k−1
k (s) + · · · .

In the case k = n − 1, this becomes

	(n−1)xn(s) = [n]q!xn−1(s) + c3[n − 1]q!
(
n − [n]q

)
. (19)

Now, using the Rodrigues formula (9) for k = n − 1,

	(n−1)Pn(x(s))q = An,n−1Bn

ρn−1(s)
∇(n)

n−1ρn(s) = An,n−1Bn

ρn−1(s)

∇
∇xn(s)

ρn(s)

as well as the identities ρn(s) = ρn−1(s + 1)σ (s + 1), xn(s) = xn−1(s + 1
2 ) and the Pearson

equation (8) for ρn−1(s), we find that

	(n−1)Pn(x(s))q = An,n−1Bnτn−1(s).

Thus

an = An,n−1Bnτ̃
′
n−1

[n]q!
= Bn

n−1∏
k=0

{
αq(n + k − 1)τ̃ ′ + [n + k − 1]q

σ̃ ′′

2

}
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and
bn

an
= [n]q τ̃n−1(0)

τ̃ ′
n−1

+ c3([n]q − n).

So

αn = Bn

Bn+1

αq(n − 1)τ̃ ′ + [n − 1]q σ̃ ′′
2

(αq(2n − 1)τ̃ ′ + [2n − 1]q σ̃ ′′
2 )(αq(2n)τ̃ ′ + [2n]q σ̃ ′′

2 )

= − Bn

Bn+1

λn

[n]q

[2n]q
λ2n

[2n + 1]q
λ2n+1

and

βn = [n]q τ̃n−1(0)

τ̃ ′
n−1

− [n + 1]q τ̃n(0)

τ̃ ′
n

+ c3([n]q + 1 − [n + 1]q).

Using the Rodrigues formula the following difference–recurrent relation follows [1, 23]:

σ(s)
∇Pn(x(s))q

∇x(s)
= λn

[n]qτ ′
n

[
τn(s)Pn(x(s))q − Bn

Bn+1
Pn+1(x(s))q

]

where τn(s) is given by (6), where the identity τ̃ ′
n = − λ2n+1

[2n+1]q
has been used.

Then, using the explicit expression for the coefficient αn, we find

σ(s)
∇Pn(x(s))q

∇x(s)
= λn

[n]q

τn(s)

τ ′
n

Pn(x(s))q − αnλ2n

[2n]q
Pn+1(x(s))q . (20)

This equation defines a raising operator in terms of the backward difference in the sense that
we can obtain the polynomial Pn+1 of degree n + 1 from the lower-degree polynomial Pn.

From the above equation and using the identity ∇ = 	−∇	, the second-order difference
equation and the three-term recurrence relation we find the [1] lowering-type operator[
σ(s) + τ(s)	x

(
s − 1

2

)]
	Pn(x(s))q

	x(s)
= γnλ2n

[2n]q
Pn−1(x(s))q

+

[
λn

[n]q

τn(s)

τ ′
n

− λn	x

(
s − 1

2

)
− λ2n

[2n]q
(x(s) − βn)

]
Pn(x(s))q . (21)

The most general polynomial solution of the q-hypergeometric equation (1) corresponds to
the case

σ(s) = A

4∏
i=1

[s − si]q = Cq−2s
4∏

i=1

(qs − qsi ) A,C, not vanishing constants (22)

and has the form [24]

Pn(s)q = Dn 4φ3

(
q−n, q2µ+n−1+

∑4
i=1 si , qs1−s , qs1+s+µ

qs1+s2+µ, qs1+s3+µ, qs1+s4+µ ; q, q

)
(23)

whereDn is a normalizing constant and the basic hypergeometric series pφq are defined by [17]

rφp

(
a1, . . . , ar
b1, . . . , bp

; q, z

)
=

∞∑
k=0

(a1; q)k . . . (ar; q)k
(b1; q)k . . . (bp; q)k

zk

(q; q)k
[
(−1)kq

k
2 (k−1)

]p−r+1

and

(a; q)k =
k−1∏
m=0

(1 − aqm) (24)

is the q-analogue of the Pochhammer symbol. Instances of such polynomials are the
Askey–Wilson polynomials, the q-Racah polynomials and big q-Jacobi polynomials among
others [17, 24].
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3. The orthonormal functions on nonuniform lattices

In this section we introduce a set of orthonormal functions which are orthogonal with respect
to the unit weight [6, 27]

ϕn(s) =
√
ρ(s)/d2

nPn(x(s))q . (25)

For example, for the case of discrete orthogonality we have

b−1∑
si=a

ϕn(si)ϕm(si)	x(si − 1
2 ) = δnm.

Next, we will establish several important properties of such functions which generalize,
to the nonuniform lattices, the ones given in [18]. In the following we use the notation
+(s) = σ(s) + τ(s)	x(s − 1

2 ).
First of all, inserting (25) into (1), (17), (20), (21) we obtain that they satisfy the difference

equation√
+(s)σ (s + 1)

1

	x(s)
ϕn(s + 1) +

√
+(s − 1)σ (s)

1

∇x(s)
ϕn(s − 1)

−
(

+(s)

	x(s)
+

σ(s)

∇x(s)

)
ϕn(s) + λn	x

(
s − 1

2

)
ϕn(s) = 0 (26)

the three-term recurrence relation

αn

dn+1

dn
ϕn+1(s) + γn

dn−1

dn
ϕn−1(s) + (βn − x(s))ϕn(s) = 0 (27)

the raising-type formula

L+(s, n)ϕn(s) = αn

λ2n

[2n]q

dn+1

dn
ϕn+1(s) (28)

and the lowering-type formula

L−(s, n)ϕn(s) = γn
λ2n

[2n]q

dn−1

dn
ϕn−1(s) (29)

where the raising-type operator L+(s, n) and the lowering-type operator L−(s, n) are given by

L+(s, n) ≡
[

λn

[n]q

τn(s)

τ ′
n

− σ(s)

∇x(s)

]
I+
√
+(s − 1)σ (s)

1

∇x(s)
E− (30)

and

L−(s, n) ≡
[
− λn

[n]q

τn(s)

τ ′
n

+ λn	x

(
s − 1

2

)
+

λ2n

[2n]q
(x(s) − βn) − +(s)

	x(s)

]
I

+
√
+(s)σ (s + 1)

1

	x(s)
E+ (31)

respectively. In the above formulae E−f (s) = f (s − 1), E+f (s) = f (s + 1) and I is the
identity operator.

Note that the last two formulae have a remarkable property of giving all the solutions
ϕn(s). In fact, from (31) setting n = 0 and taking into account that ϕ−1(s) ≡ 0 we can
obtain ϕ0(s). Then, substituting the obtained function in (30), we can find all the functions
ϕ1(s), . . . , ϕn(s), . . . .

Proposition 3.1. The raising and lowering operators (30) and (31) are mutually adjoint.



Factorization method for difference equations of hypergeometric type on nonuniform lattices 5557

Proof. The proof is straightforward. Using the boundary condition and after some calculations
we obtain, in the case of discrete orthogonality, the expression

b−1∑
si=a

ϕn+1(si)

[
[2n]q
λ2n

L+(si, n)ϕn(si)

]
	x

(
si − 1

2

)

=
b−1∑
si=a

[
[2n + 2]q
λ2n+2

L−(si, n + 1)ϕn+1(si)

]
ϕn(si)	x

(
si − 1

2

)
= αn

dn+1

dn
.

The other cases can be dealt with in an analogous way. �

Proposition 3.2. The operator corresponding to the eigenvalue λn in (26) is self-adjoint.

Proof. Again, we prove the result in the case of discrete orthogonality. Using the orthogonality
conditions σ(a)ρ(a) = σ(b)ρ(b) = 0 (which is a consequence of (13)), we can write

b−1∑
si=a

ϕn(si)
√
+(si − 1)σ (si)

1

∇x(si)
ϕl(si − 1)	x

(
si − 1

2

)

=
b−2∑

s ′
i=a−1

ϕn(s
′
i + 1)

√
+(s ′

i )σ (s
′
i + 1)

1

∇x(s ′
i + 1)

ϕl(s
′
i )	x

(
s ′
i +

1

2

)

=
b−1∑
si=a

ϕn(si + 1)
√
+(si)σ (si + 1)

1

∇x(si + 1)
ϕl(si)	x

(
si +

1

2

)

+ϕn(a)
√
+(a − 1)σ (a)

1

∇x(a)
ϕl(a − 1)	x

(
a − 1

2

)

−ϕn(b)
√
+(b − 1)σ (b)

1

∇x(b)
ϕl(b − 1)	x

(
b − 1

2

)

where in the last two sums we first take the operations 	 and ∇, and then substitute the
corresponding value: for example, 	x(a) = x(a + 1) − x(a).

Now, we use the fact that ϕn(s) = √
ρ(s)/d2

nPn(x(s))q , as well as the boundary conditions
σ(a)ρ(a) = σ(b)ρ(b) = 0, so√

+(a − 1)σ (a) ϕn(a)ϕl(a − 1) =
√
+(b − 1)σ (b)ϕn(b)ϕl(b − 1) = 0.

The other terms can be transformed in a similar way. All these yield the expression

b−1∑
si=a

ϕl(si)

{√
+(si)σ (si + 1)

1

	x(si)
ϕn(si + 1)	x

(
si +

1

2

)

+
√
+(si − 1)σ (si)

1

∇x(si)
ϕn(si − 1)	x

(
si − 1

2

)}

=
b−1∑
si=a

ϕn(si)

{√
+(si)σ (si + 1)

1

	x(si)
ϕl(si + 1)	x

(
si +

1

2

)

+
√
+(si − 1)σ (si)

1

∇x(si)
ϕl(si − 1)	x

(
si − 1

2

)}

from which the proposition easily follows. �
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4. Factorization of difference equation of hypergeometric type on the nonuniform lattice

We define from (26) the following operator:

H(s, n) ≡
√
+(s − 1)σ (s)

1

∇x(s)
E− +

√
+(s)σ (s + 1)

1

	x(s)
E+

−
(

+(s)

	x(s)
+

σ(s)

∇x(s)
− λn	x

(
s − 1

2

))
I.

Clearly, the orthonormal functions satisfy

H(s, n)ϕn(s) = 0.

Let us rewrite the raising and lowering operators in the following way:

L+(s, n) = u(s, n)I +
√
+(s − 1)σ (s)

1

∇x(s)
E−

L−(s, n) = v(s, n)I +
√
+(s)σ (s + 1)

1

	x(s)
E+

where, as before, +(s) = σ(s) + τ(s)	x(s − 1
2 ), and

u(s, n) = λn

[n]q

τn(s)

τ ′
n

− σ(s)

∇x(s)

v(s, n) = − λn

[n]q

τn(s)

τ ′
n

+ λn	x

(
s − 1

2

)
+

λ2n

[2n]q
(x(s) − βn) − +(s)

	x(s)
.

Proposition 4.1. The functions u(s, n) and v(s, n) satisfy u(s + 1, n) = v(s, n + 1) or,
equivalently, u(s + 1, n − 1) = v(s, n).

The proof of the above proposition is straightforward but cumbersome. We include it in
appendix. If we now calculate

L−(s, n + 1)L+(s, n) = v(s, n + 1)u(s, n) + +(s)σ (s + 1)

(
1

	x(s)

)2

+u(s + 1, n)

{√
+(s − 1)σ (s)

1

∇x(s)
E− +

√
+(s)σ (s + 1)

1

	x(s)
E+

}
and substitute the values for u(s, n), v(s, n) and H(s, n) we get

L−(s, n + 1)L+(s, n) = h∓(n)I + u(s + 1, n)H(s, n)

where the function

h∓(n) =
(

λn

[n]q

τn(s + 1)

τ ′
n

− σ(s + 1)

∇x(s + 1)

)(
λn

[n]q

τn(s)

τ ′
n

− λn	x

(
s − 1

2

))

+
λn

[n]q

τn(s + 1)

τ ′
n

+(s)

	x(s)

is independent of s. In fact, applying the last equality to the orthonormal function ϕn(s) and
taking into account (28) and (29),

h∓(n) = λ2n

[2n]q

λ2n+2

[2n + 2]q
αnγn+1.

Similarly,

L+(s, n − 1)L−(s, n) = h±(n)I + u(s, n − 1)H(s, n)
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where

h±(n) =
(

− λn

[n]q

τn(s − 1)

τ ′
n

+
λ2n

[2n]q
(x(s − 1) − βn) + λn	x

(
s − 3

2

))

×
(

− λn

[n]q

τn(s)

τ ′
n

+
λ2n

[2n]q
(x(s) − βn) +

σ(s)

∇x(s)

)

=
(

− λn

[n]q

τn(s)

τ ′
n

+
λ2n

[2n]q
(x(s) − βn)

)(
+(s − 1)

	x(s − 1)

)

is independent of s. Furthermore, applying the last expression to the functions ϕn(s), and
taking into account (28) and (29), we obtain

h±(n) = λ2n−2

[2n − 2]q

λ2n

[2n]q
αn−1γn.

Remark. Notice that h±(n + 1) = h∓(n).

All the above results lead us to our main theorem.

Theorem 4.1. The operatorH(s, n), corresponding to the hypergeometric difference equation
for orthonormal functions ϕn(s) admits the following factorization—usually called the Infeld–
Hull-type factorization:

u(s + 1, n)H(s, n) = L−(s, n + 1)L+(s, n) − h∓(n)I (32)

and

u(s, n)H(s, n + 1) = L+(s, n)L−(s, n + 1) − h∓(n)I (33)

respectively.

Remark. Substituting in the above formulae the expression x(s) = s we obtain the
corresponding results for the uniform lattice cases (Hahn, Kravchuk, Meixner and Charlier),
considered before by several authors (see, for example, [6, 18, 27] and by taking appropriate
limits (see, for example, [17, 23]), we can recover the classical continuous case (Jacobi,
Laguerre and Hermite).

5. Applications to some q-normalized orthogonal functions

For the sake of completeness we apply the above results to several families of orthogonal
q-polynomials and their corresponding orthonormal q-functions that are of interest and appear
in several branches of mathematical physics. They are the Al-Salam and Carlitz polynomials I
and II, the big q-Jacobi polynomials, the dual q-Hahn polynomials, the continuous q-Hermite
and the celebrated q-Askey–Wilson polynomials.

The main data for these polynomials are taken from [17], except for the case of dual
q-Hahn polynomials [3]. They can be obtained from the general formulae given in section 2.

Finally, let us point out that similar factorization formulae have been obtained by other
authors: for example, Miller in [21] considered the polynomials on the linear exponential
lattice and Bangerezako studied the Askey–Wilson case. Our main aim in this section is to
show how our general formulae lead, in a very easy way, to the needed factorization formulae
of several families for normalized functions—not polynomials.
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5.1. The Al-Salam and Carlitz functions I and II

The Al-Salam and Carlitz polynomials I (and II) appear in certain models of q-harmonic
oscillator: see, for example, [5, 8, 9, 22]. They are polynomials on the exponential lattice
x(s) = qs ≡ x, defined [17] by

U(a)
n (x; q) = (−a)nq(

n

2) 2φ1

(
q−n, x−1

0

∣∣∣∣ q; qx
a

)
and constitute an orthogonal family with the orthogonality relation (15)∫ 1

a

U(a)
n (x; q)U(a)

m (x; q)ω(x) dqx = d2
nδnm

where

ω(x) = (qx, a−1qx; q)∞ and d2
n = (−a)n(1 − q)(q; q)n(q, a, a−1q; q)∞q(

n

2).

As usual, (a1, . . . , ap; q)n = (a1; q)n . . . (ap; q)n, and (a; q)∞ = ∏∞
k=0(1 − aqk).

They satisfy a difference equation of the form (1) where

σ(x) = (x − 1)(x − a) τ(x) = τ̃ (x) = τ ′x + τ(0)

with

τ ′ = q1/2

1 − q
τ(0) = q1/2 1 + a

q − 1
.

The eigenvalues λn and the coefficients of the TTRR are given by

λn = [n]q
q1−n/2

q − 1
and αn = 1 βn = (1 + a)qn γn = aqn−1(qn − 1)

respectively. In this case we have

σ̃ ′′ = 1 σ̃ ′(0) = −a + 1

2
σ̃ (0) = a τ ′

n = q
1
2 −n

1 − q
τn(0) = q

1−n
2

a + 1

q − 1
.

The corresponding normalized functions (25) are

ϕn(x) =
√

(qx, a−1qx; q)∞(−a)nq(
n

2)

(1 − q)(q; q)n(q, a, q/a; q)∞ 2ϕ1

(
q−n, x−1

0

∣∣∣∣ q; qx
a

)
.

Defining now the Hamiltonian for these functions ϕn(x)

H(x, n) =
√
a(x − 1)(x − a)

x(1 − q−1)
E− +

√
a(qx − 1)(qx − a)

x(q − 1)
E+

+

(
q1−n

1 − q
x +

q(a + 1)

q − 1
− [2]q

kq
x−1

)
I

and using that u(x, n) = aq

1−q
x−1, v(x, n) = u(qx, n − 1) = a

1−q
x−1, thus

L+(x, n) = u(x, n)I + q

√
a(x − 1)(x − a)

x(q − 1)
E− where E−f (x) = f (q−1x)

and

L−(x, n) = v(x, n)I +

√
a(qx − 1)(qx − a)

x(q − 1)
E+ where E+f (x) = f (qx)

we have

L−(x, n + 1)L+(x, n) = aq1−n(qn+1 − 1)

(q − 1)2
I + v(x, n + 1)H(x, n)



Factorization method for difference equations of hypergeometric type on nonuniform lattices 5561

and

L+(x, n − 1)L−(x, n) = aq2−n(qn − 1)

(q − 1)2
I + u(x, n − 1)H(x, n)

which give the factorization formulae for the Al-Salam and Carlitz functions I. If we now take
into account that (see [17, p 115])

V (a)
n (x; q) = U(a)

n (x; q−1)

then the factorization for the Al-Salam and Carlitz functions II

ϕn(s) = q(
s

2)

√
as+n(aq; q)∞q(

n+1
2 )

(q, aq; q)s(1 − q)(q; q)n 2φ0

(
q−n, x

−
∣∣∣∣ q; q

n

a

)
follows from the factorization for the Al-Salam and Carlitz functions I simply by changing q

to q−1.

5.2. The big q-Jacobi functions

Now we consider the most general family of q-polynomials on the exponential lattice, the
so-called big q-Jacobi polynomials, that appear in the representation theory of the quantum
algebras [31]. They were introduced by Hahn in 1949 and are defined [17] by

Pn(x; a, b, c; q) = (aq; q)n(cq; q)n
(abqn+1; q)n 3φ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q; q
)

x(s) = qs ≡ x.

They constitute an orthogonal family, i.e.∫ aq

cq

ω(x)Pn(x; a, b, c; q)Pn(x; a, b, c; q) dqx = d2
nδnm

where

ω(x) = (a−1x; q)∞(c−1x; q)∞
(x; q)∞(bc−1x; q)∞

d2
n = aq(1 − q)(q, c/a, aq/c, abq2; q)∞

(aq, bq, cq, abq/c; q)∞
(1 − abq)(q, bq, abq/c; q)n(−ac)−nq−(n2)

(abq, abqn+1, abqn+1)n
.

They satisfy the difference equation (1) with

σ(x) = q−1(x − aq)(x − cq) and τ(x) = τ̃ (x) = τ ′x + τ(0)

where

τ ′ = 1 − abq2

(1 − q)q1/2
and τ(0) = q1/2 a(bq − 1) + c(aq − 1)

1 − q

and

λn = −q−n/2[n]q
1 − abqn+1

1 − q
.

They satisfy a TTRR, whose coefficients are

αn = 1 βn = 1 − An − Cn γn = CnAn−1

where

An = (1 − aqn+1)(1 − cqn+1)(1 − abqn+1)

(1 − abq2n+1)(1 − abq2n+2)

Cn = −acqn+1 (1 − qn)(1 − bqn)(1 − abc−1qn)

(1 − abq2n)(1 − abq2n+1)
.
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Also, we have

σ̃ ′′ = 1 + abq2

q
σ̃ ′(0) = −abq + acq + a + c

2
σ̃ (0) = acq

τ ′
n = q−n − abqn+2

q1/2(1 − q)
τn(0) = q

1−n
2
a(bq1+n − 1) + c(aq1+n − 1)

1 − q
.

The normalized big q-Jacobi functions are defined by

ϕn(s) =
√

(x/a, x/c; q)∞(aq, bq, abq/c; q)∞(abq, aq, aq, cq, cq; q)n(−ac)n

(x, bx/c, c/a, aq/c, abq2; q)∞(1 − q)aq(1 − abq)(q, bq, abq/c; q)n
× 3φ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q; q
)
.

The corresponding Hamiltonian is

H(x, n) =
√
a(x − q)(x − aq)(x − cq)(bx − cq)

x(q − 1)
E−

+q

√
a(x − 1)(x − a)(x − c)(bx − c)

x(q − 1)
E+

+

(
1 + abq2n+1

qn(1 − q)
x − q(a + ab + c + ac)

1 − q
+
acq(q + 1)

1 − q
x−1

)
I.

Furthermore,

u(x, n) = abqn+1

1 − q
x + Dn − acq2

q − 1
x−1

v(x, n) = abqn+1

1 − q
x + Dn−1 − acq

q − 1
x−1

where

Dn = ab(ab + ac + a + c)q2n+3 − a(b + c + ab + bc)qn+2

(1 − abq2n+2)(1 − q)

thus

L+(x, n) = u(x, n)I +

√
a(x − q)(x − aq)(x − cq)(bx − cq)

x(q − 1)
E−

where E−f (x) = f (q−1x)

and

L−(x, n) = v(x, n)I + q

√
a(x − 1)(x − a)(x − c)(bx − c)

x(q − 1)
E+

where E+f (x) = f (qx)

so

L−(x, n + 1)L+(x, n) = δn+1γn+1I + v(x, n + 1)H(x, n)

L+(x, n − 1)L−(x, n) = δnγnI + u(x, n − 1)H(x, n)

where

δn = (1 − abq2n−1)(1 − abq2n+1)

q2n−1(q − 1)2
.
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The above formulae are the factorization formulae for the family of the big q-Jacobi normalized
functions.

Since all discrete q-polynomials on the exponential lattice x(s) = c1q
s +c3—the so-called

q-Hahn class—can be obtained from the big q-Jacobi polynomials by a certain limit process
(see, for example, [2, 17]), then from the above formulae we can obtain the factorization
formulae for the all other cases in the q-Hahn tableau. Of special interest are the q-Hahn
polynomials and the big q-Laguerre polynomials, which are particular cases of the big q-
Jacobi polynomials when c = q−N−1, N = 1, 2, . . . , and c = 0, respectively.

5.3. The q-dual-Hahn functions

In this section we will deal with the q-dual Hahn polynomials, introduced in [3,24] and closely
related with the Clebsch–Gordan coefficients of the q-algebrasSUq(2) andSUq(1, 1) [3]. They
are defined on the lattice x(s) = [s]q[s + 1]q by

Wc
n(x(s); a, b)q = (−1)n(qa−b+1; q)n(qa+c+1; q)n

qn/2(3a−b+c+1+n)knq (q; q)n 3φ2

(
q−n, qa−s , qa+s+1

qa−b+1, qa+c+1

∣∣∣∣ q; q
)

and satisfy a discrete orthogonality (14) with respect to the weight function

ρ(s) = q
1
2 ((b−1)2−(2s−1)(a+c))

(1 − q)2(a+c−b)+1

(qs−a+1, qs−c+1, qs+b+1, qb−s; q)∞
(q, q, qs+a+1, qs+c+1; q)∞

where − 1
2 � a < b − 1, |c| < a + 1, and for this weight function the norm is

d2
n = q

1
4 (−4ab−4bc+6a+6c−8b+6+4n(a+c−2b)−n2+17n+2b2)

(1 − q)2(a+c−b+1)+3n

(qb−c−n, qb−a−n; q)∞
[n]q!(q, qa+c+n+1; q)∞ .

These polynomials satisfy a TTRR (17) with

αn = 1

βn = q
1
2 (2n−b+c+1)[b − a − n + 1]q[a + c + n + 1]q

+q
1
2 (2n+2a+c−b+1)[n]q[b − c − n]q + [a]q[a + 1]q

γn = q2n+c+a−b[a + c + n]q[b − a − n]q[b − c − n]q[n]q

and the second-order difference equation (1), whose eigenvalues are λn = [n]qq
1
2 − n

2 and

σ(s) = q
1
2 (s+c+a−b+2)[s − a]q[s + b]q[s − c]q and τ(x) = τ̃ (x) = τ ′x + τ(0)

with τ ′ = −1 and τ(0) = q
1
2 (a−b+c+1)[a + 1]q[b − c − 1]q + q

1
2 (c−b+1)[b]q[c]q .

We also need the values

σ̃ ′′ = kq σ̃ ′(0) = 1

2kq
(2[2]q − q

1
2 −b − q

1
2 +a − q

3
2 +a+c−b − q

1
2 +c)

σ̃ (0) = 1

2k3
q

(2q1+a−b + q−1 + q + 2q1+c−b + 2q1+a+c − (1 + q)(q−b + qa + qc + q1+a+c−b))

τ ′
n = −q−n

τn(0) = q
1
2 (c−b−n+1)

[
c +

n

2

]
q

[
b − n

2

]
q

+ q
1
2 (a+c−b+1− n

2 )
[
a +

n

2
+ 1
]
q

[b − c − n − 1]q .

In this case, the Hamiltonian, associated with the q-dual Hahn normalized functions√
ρ(s)/d2

nW
c
n(x(s); a, b)q , is

H(s, n) = q
1
2 (c+a−b+2)

√
([s + 1]2

q − [a]2
q)([b]2

q − [s + 1]2
q)([s + 1]2

q − [c]2
q)

[2s + 2]q
E+
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+q
1
2 (c+a−b+2)

√
([s]2

q − [a]2
q)([b]2

q − [s]2
q)([s]2

q − [c]2
q)

[2s]q
E−

−q
1
2 − n

2 [n]q[2s + 1]qI + q
1
2 (c+a−b+2)

×
(

[s − a]q[s + b]q + [s − c]q
[2s]q

− [s + 1 − a]q[s + 1 + b]q[s + 1 − c]q
[2s + 2]q

)
I

where E+f (s) = f (s + 1) and E−f (s) = f (s − 1). Then, using that

u(s, n) = q
1
2 − n

2 x(s + n/2) − q
1
2 + n

2 (q
1
2 (c−b−n+1)

[
c +

n

2

]
q

[
b − n

2

]
q

+q
1
2 (a+c−b+1− n

2 )
[
a +

n

2
+ 1
]
q

[b − c − n − 1]q)

−q
1
2 (s+c+a−b+2) [s − a]q[s + b]q[s − c]q

[2s]q
and taking into account that v(s, n) = u(s + 1, n − 1), we find

L+(s, n) = u(s, n)I + q
1
2 (c+a−b+2)

√
([s]2

q − [a]2
q)([b]2

q − [s]2
q)([s]2

q − [c]2
q)

[2s]q
E−

and

L−(s, n) = v(s, n)I + q
1
2 (c+a−b+2)

√
([s + 1]2

q − [a]2
q)([b]2

q − [s + 1]2
q)([s + 1]2

q − [c]2
q)

[2s + 2]q
E+.

Thus

L−(s, n + 1)L+(s, n) = q−2nγn+1I + v(s, n + 1)H(s, n)

and

L+(s, n − 1)L−(s, n) = q−2n+2γnI + u(s, n − 1)H(s, n)

are the factorization formulae for the q-dual Hahn normalized functions.

5.4. The Askey–Wilson functions

Finally, we consider the family of Askey–Wilson polynomials. They are polynomials on the
lattice x(s) = 1

2 (q
s + q−s) ≡ x, defined by [17]

pn(x(s); a, b, c, d) = (ab; q)n(ac; q)n(ad; q)n
an 4φ3

(
q−n, qn−1abcd, ae−iθ , aeiθ

ab, ac, ad

∣∣∣∣ q; q
)

i.e. they correspond to the general case (23) when qs1 = a, qs2 = b, qs3 = c, qs4 = d. Their
orthogonality relation is of the form∫ 1

−1
ω(x)pn(x; a, b, c, d)pm(x; a, b, c, d)

√
1 − x2κq dx = δnmd

2
n qs = eiθ x = cos θ

where

ω(x) = h(x, 1)h(x,−1)h(x, q
1
2 )h(x,−q

1
2 )

2πκq(1 − x2)h(x, a)h(x, b)h(x, c)h(x, d)
h(x, α) =

∞∏
k=0

[1 − 2αxqk + α2q2k]

and the norm is given by

d2
n = (abcdqn−1; q)n(abcdq2n; q)∞

(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞ .
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The Askey–Wilson polynomials satisfy the difference equation (1) with

σ(s) = −q−2s+1/2κ2
q (q

s − a)(qs − b)(qs − c)(qs − d) κq = (q
1
2 − q− 1

2 )

and τ(x) = τ̃ (x) = τ ′x + τ(0), where

τ ′ = 4(q − 1)(1 − abcd) τ(0) = 2(1 − q)(a + b + c + d − abc − abd − acd − bcd).

Furthermore, they satisfy the TTRR (17) with coefficients

αn = 1 βn = a + a−1 − (An + Cn)

2
γn = CnAn−1

4

where An, Cn are defined by

An = (1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)

Cn = a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1 − abcdq2n−2)(1 − abcdq2n−1)

and whose eigenvalues are λn = 4q−n+1(1 − qn)(1 − abcdqn−1). In addition, we have

σ̃ ′′ = −4(q − 1)2(1 + abcd)q−1/2

σ̃ ′(0) = (q − 1)2(a + b + c + d + abc + abd + acd + bcd)q−1/2

σ̃ (0) = (q − 1)2(1 − ab − ac − ad − bc − bd − cd + abcd)q−1/2

τ ′
n = 4q−n(q − 1)(1 − abcdq2n)

τn(0) = 2(q − 1)(−a − b − c − d + (abc + abd + acd + bcd)qn)q−n/2.

Defining now the normalized functions (see (15))
√
ω(x)/d2

npn(x; a, b, c, d), the
corresponding Hamiltonian H(s, n) is

H(s, n) = 2q3/2

[2s − 1]q
G(s, a, b, c, d)E− +

2q3/2

[2s + 1]q
G(s + 1, a, b, c, d)E+

+2

(
q−2s+1/2

∏4
i=1(1 − qsi+s)

[2s + 1]q
+ q−2s+1/2

∏4
i=1(q

s − qsi )

[2s − 1]q

+q−n+1κ2
q (1 − qn)(1 − abcdqn−1)[2s]q

)
I

where

G(s, a, b, c, d) =
√√√√ 4∏

i=1

(1 − 2qsi q−1/2x(s − 1/2) + q−1q2si ).

We now define

u(s, n) = Dnxn(s) + DnEn + q−2s+1/2 (q
s − a)(qs − b)(qs − c)(qs − d)

[2s − 1]q

where

Dn = −4q−n/2+1/2(q − 1)(1 − abcdqn−1)

En = (−a − b − c − d + (abc + abd + acd + bcd)qn)qn/2

2(1 − abcdq2n)
.
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Taking into account that v(s, n) = u(s + 1, n − 1), we find

L+(s, n) = u(s, n)I +
2q3/2

[2s − 1]q
G(s, a, b, c, d)E−

L−(s, n) = v(s, n)I +
2q3/2

[2s + 1]q
G(s + 1, a, b, c, d)E+

where E−f (s) = f (s − 1) and E+f (s) = f (s + 1). Thus,

L−(s, n + 1)L+(s, n) = D2nD2n+2γn+1I + v(s, n + 1)H(s, n)

and

L+(s, n − 1)L−(s, n) = D2n−2D2nγnI + u(s, n − 1)H(s, n)

which is the factorization formula for the Askey–Wilson functions.
To conclude this paper let us consider the special case of Askey–Wilson polynomials when

a = b = c = d = 0: i.e., the continuous q-Hermite polynomials

Hn(x|q) = 2−neinθ
2φ0

(
q−n, 0

—

∣∣∣∣ q; qne−2iθ

)
x = cos θ.

These polynomials are closely related to the q-harmonic oscillator model introduced by
Biedenharn [13] and Macfarlane [19], as was pointed out in [9], where the factorization for the
continuous q-Hermite polynomials were first considered. If we substitute a = b = c = d = 0
in the above formulae, we obtain the factorization for the q-Hermite functions

ϕn(x) =
√

h(x, 1)h(x,−1)h(x, q1/2)h(x,−q1/2)(qn+1; q)∞
2πκq(1 − x2)

Hn(x|q).

In fact, since for continuous q-Hermite polynomials

σ(s) = −κ2
q q

2s+1/2 τ(s) = 4(q − 1)x(s) λn = 4q−n+1(1 − qn)

and the coefficients for the three-term recurrence relation are αn = 1, βn = 0, γn = (1−qn)/4,
then we obtain

H(s, n) = 2q3/2

[2s − 1]q
E− +

2q3/2

[2s + 1]q
E+

+2

(
q−2s+1/2

[2s + 1]q
+

q2s+1/2

[2s − 1]q
− q−n+1κ2

q (1 − qn)[2s]q

)
I

L+(s, n) =
(

−4q−n/2+1/2(q − 1)x(s + n/2) +
q2s+1/2

[2s − 1]q

)
I +

2q3/2

[2s − 1]q
E−

L−(s, n) =
(

−4q−n/2+1(q − 1)x(s + n/2 + 1/2) +
q2s+5/2

[2s + 1]q

)
I +

2q3/2

[2s + 1]q
E−

and h±(n) = 4κ2
q q

−2n+1(1 − qn).
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Appendix

Here, for the sake of completeness, we prove proposition 4.1, by showing that u(s + 1, n) −
v(s, n + 1) = 0. To do that, we start by computing the difference

u(s + 1, n) − v(s, n + 1) = λn

[n]q

τn(s + 1)

τ ′
n

− 	σ(s)

	x(s)
+

λn+1

[n + 1]q

τn+1(s)

τ ′
n+1

−λn+1	x

(
s − 1

2

)
− λ2n+2

[2n + 2]q
(x(s) − βn+1) +

τ(s)	x
(
s − 1

2

)
	x(s)

.

Now we use the expansion τn(s + 1) = τ ′
nxn(s + 1) + τn(0). Since

	(x2(s))

	x(s)
= x2(s + 1) − x2(s)

x(s + 1) − x(s)
= x(s + 1) + x(s) = C1q

s(q + 1) + C2q
−s(q−1 + 1) + 2C3

= (C1q
s+ 1

2 + C2q
−s− 1

2 )[2]q + 2C3 = [2]qx1(s) + (2 − [2]q)C3

x(s)	x(s − 1
2 ) = x(s)(C1q

s− 1
2 (q − 1) + C2q

−s+ 1
2 (q−1 − 1)) = x(s)(C1q

s − C2q
−s)kq

= (C2
1q

2s − C2
2q

−2s)kq + C3(C1q
s − C2q

−s)kq

where kq = q
1
2 − q− 1

2 ,

	

	x(s)

(
x(s)	x

(
s − 1

2

))
=
(
(C2

1q
2s+1 + C2

2q
−2s−1)[2]q + C3(C1q

s+ 1
2 + C2q

−s− 1
2 )

C1q
s+ 1

2 − C2q
−s− 1

2

)
kq

and
	

	x(s)

(
	x

(
s − 1

2

))
= 	

	x(s)

(
(C1q

s − C2q
−s)kq

)
= C1q

s+ 1
2 + C2q

−s− 1
2

C1q
s+ 1

2 − C2q
−s− 1

2

kq.

Then
	σ(s)

	x(s)
= 	

	x(s)

(
σ̃ (s) − 1

2
τ̃ (s)	x

(
s − 1

2

))

= 	

	x(s)

(
σ̃ ′′

2
x2(s) + σ̃ ′(0)x(s) + σ̃ (0) − 1

2

(
τ ′x(s) + τ(0)

)
	x

(
s − 1

2

))

= σ̃ ′′

2

(
[2]qx1(s) + (2 − [2]q)C3

)
+ σ̃ ′(0) − 1

2
τ(0)

(
C1q

s+ 1
2 + C2q

−s− 1
2

C1q
s+ 1

2 − C2q
−s− 1

2

)
kq

−1

2
τ ′
(

[2]q(C2
1q

2s+1 + C2
2q

−2s−1) + C3(C1q
s+ 1

2 + C2q
−s− 1

2 )

C1q
s+ 1

2 − C2q
−s− 1

2

)
kq.

This yields for u(s + 1, n) − v(s, n + 1) the expression

=
[

λn

[n]q
xn(s + 1) +

λn

[n]q

τn(0)

τ ′
n

]
−
[
σ̃ ′′

2
[2]qx1(s) +

C3

2
(2 − [2]q)σ̃

′′ + σ̃ ′(0)

− τ̃ ′

2

(
[2]q(C2

1q
2s+1 + C2

2q
−2s−1)

C1q
s+ 1

2 − C2q
−s− 1

2

+
C3x1(s) − C2

3

C1q
s+ 1

2 − C2q
−s− 1

2

)
kq

−τ(0)

2

(
x1(s) − C3

C1q
s+ 1

2 − C2q
−s− 1

2

)
kq

]
+

λn+1

[n + 1]q

τn+1(s)

τ ′
n+1

− λn+1	x

(
s − 1

2

)

− λ2n+2

[2n + 2]q

[
C1q

s + C2q
−s + C3 − [n + 1]qτn(0)

τ ′
n

+
[n + 2]qτn+1(0)

τ ′
n+1

− C3(1 + [n + 1]q − [n + 2]q)

]
+
τ(s)	x

(
s − 1

2

)
	x(s)

.
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Next, we expand 	xn(s) and σ̃ ′′
2 [2]x1(s), make some straightforward calculations and use the

identities
λn

[n]q

τn(0)

τ ′
n

+ [n + 1]q
λ2n+2

[2n + 2]q

τn(0)

τ ′
n

=
(

λn

[n]q
+ [n + 1]q

λ2n+2

[2n + 2]q

)
τn(0)

τ ′
n

= −[n + 2]qτn(0)

λn+1

[n + 1]q

τn+1(s)

τ ′
n+1

− [n + 2]q
λ2n+2

[2n + 2]q

τn+1(0)

τ ′
n+1

= [n + 1]qτn+1(0) +
λn+1

[n + 1]q
xn+1(s)

as well as
λn

[n]q
(C1q

s+1+ n
2 + C2q

−s−1− n
2 ) − σ̃ ′′

2
[2]q(C1q

s+ 1
2 + C2q

−s− 1
2 ) − λ2n+2

[2n + 2]q
(C1q

s + C2q
−s)

−λn+1(C1q
s − C2q

−s)kq + 1
2τ

′(C1q
s+ 1

2 + C2q
−s− 1

2 )(q + q−1)

= C1q
sτ ′

2
(qn+ 1

2 + q
1
2 ) +

C1q
sσ̃ ′′

2(q
1
2 − q− 1

2 )
(qn+ 1

2 − q
1
2 ) +

C2q
−sτ ′

2
(q−n− 1

2 + q− 1
2 )

+
C2q

−s σ̃ ′′

2(q
1
2 − q− 1

2 )
(−q−n− 1

2 + q− 1
2 )

= − λn+1

[n + 1]q
(C1q

s+ n+1
2 + C2q

−s− n+1
2 )

and we find

= − λn+1

[n + 1]q

(
C1q

s+ n+1
2 + C2q

−s− n+1
2
)

+C3
λn

[n]q
− [n + 2]qτn(0) − C3σ̃

′′ − σ̃ ′(0) +
1

2
τ ′C3kq

+
1

2
τ(0)kq + [n + 1]qτn+1(0) +

λn+1

[n + 1]q
(C1q

s+ n+1
2 + C2q

−s− n+1
2 + C3)

+
λ2n+2

[2n + 2]q
C3([n + 1]q − [n + 2]q).

Finally, we substitute the expression for τn(0) and use the identities

−[n + 2]q[n]q − 1 + [n + 1]q[n + 1]q = 0

−[n + 2]q(q
n/2 + q−n/2) + kq + [n + 1]q(q

(n+1)/2 + q(n+1)/2) = 0

and the result follows.
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[1] Álvarez-Nodarse R and Arvesú J 1999 On the q-polynomials on the exponential lattice x(s) = c1q
s +c3 Integral

Trans. Special Funct. 8 299–324
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